Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Chemosphere ; 357: 141918, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38614394

RESUMO

Aeromonas spp. are frequently encountered in aquatic environments, with Aeromonas veronii emerging as an opportunistic pathogen causing a range of diseases in both humans and animals. Recent reports have raised public health concerns due to the emergence of multidrug-resistant Aeromonas spp. This is particularly noteworthy as these species have demonstrated the ability to acquire and transmit antimicrobial resistance genes (ARGs). In this study, we report the genomic and phenotypic characteristics of the A. veronii TR112 strain, which harbors a novel variant of the Vietnamese Extended-spectrum ß-lactamase-encoding gene, blaVEB-28, and two mcr variants recovered from an urban river located in the Metropolitan Region of São Paulo, Brazil. A. veronii TR112 strain exhibited high minimum inhibitory concentrations (MICs) for ceftazidime (64 µg/mL), polymyxin (8 µg/mL), and ciprofloxacin (64 µg/mL). Furthermore, the TR112 strain demonstrated adherence to HeLa and Caco-2 cells within 3 h, cytotoxicity to HeLa cells after 24 h of interaction, and high mortality rates to the Galleria mellonella model. Genomic analysis showed that the TR112 strain belongs to ST257 and presented a range of ARGs conferring resistance to ß-lactams (blaVEB-28, blaCphA3, blaOXA-912) and polymyxins (mcr-3 and mcr-3.6). Additionally, we identified a diversity of virulence factor-encoding genes, including those encoding mannose-sensitive hemagglutinin (Msh) pilus, polar flagella, type IV pili, type II secretion system (T2SS), aerolysin (AerA), cytotoxic enterotoxin (Act), hemolysin (HlyA), hemolysin III (HlyIII), thermostable hemolysin (TH), and capsular polysaccharide (CPS). In conclusion, our findings suggest that A. veronii may serve as an environmental reservoir for ARGs and virulence factors, highlighting its importance as a potential pathogen in public health.

2.
Sci Rep ; 14(1): 9383, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654061

RESUMO

Brazil is recognized for its biodiversity and the genetic variability of its organisms. This genetic variability becomes even more valuable when it is properly documented and accessible. Understanding bacterial diversity through molecular characterization is necessary as it can improve patient treatment, reduce the length of hospital stays and the selection of resistant bacteria, and generate data for health and epidemiological surveillance. In this sense, in this study, we aimed to understand the biodiversity and molecular epidemiology of carbapenem-resistant bacteria in clinical samples recovered in the state of Rondônia, located in the Southwest Amazon region. Retrospective data from the Central Public Health Laboratories (LACEN/RO) between 2018 and 2021 were analysed using the Laboratory Environment Manager Platform (GAL). Seventy-two species with carbapenem resistance profiles were identified, of which 25 species carried at least one gene encoding carbapenemases of classes A (blaKPC-like), B (blaNDM-like, blaSPM-like or blaVIM-like) and D (blaOXA-23-like, blaOXA-24-like, blaOXA-48-like, blaOXA-58-like or blaOXA-143-like), among which we will highlight Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Serratia marcescens, and Providencia spp. With these results, we hope to contribute to the field by providing epidemiological molecular data for state surveillance on bacterial resistance and assisting in public policy decision-making.


Assuntos
Biodiversidade , Carbapenêmicos , beta-Lactamases , Brasil , Humanos , Carbapenêmicos/farmacologia , beta-Lactamases/genética , Estudos Retrospectivos , Antibacterianos/farmacologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Proteínas de Bactérias/genética , Testes de Sensibilidade Microbiana , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/classificação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Farmacorresistência Bacteriana/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação
4.
One Health ; 17: 100591, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37388190

RESUMO

Serratia marcescens is a Gram-negative bacterium presenting intrinsic resistance to polymyxins that has emerged as an important human pathogen. Although previous studies reported the occurrence of multidrug-resistance (MDR) S. marcescens isolates in the nosocomial settings, herein, we described isolates of this extensively drug-resistant (XDR) species recovered from stool samples of food-producing animals in the Brazilian Amazon region. Three carbapenem-resistant S. marcescens strains were recovered from stool samples of poultry and cattle. Genetic similarity analysis showed that these strains belonged to the same clone. Whole-genome sequencing of a representative strain (SMA412) revealed a resistome composed of genes encoding resistance to ß-lactams [blaKPC-2, blaSRT-2], aminoglycosides [aac(6')-Ib3, aac(6')-Ic, aph(3')-VIa], quinolones [aac(6')-Ib-cr], sulfonamides [sul2], and tetracyclines [tet(41)]. In addition, the analysis of the virulome demonstrated the presence of important genes involved in the pathogenicity of this species (lipBCD, pigP, flhC, flhD, phlA, shlA, and shlB). Our data demonstrate that food-animal production can act as reservoirs for MDR and virulent strains of S. marcescens.

5.
J Antimicrob Chemother ; 78(6): 1359-1366, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37038995

RESUMO

OBJECTIVES: To characterize a novel acquired MBL, BIM-1, in a Pseudomonas #2 (subgroup P. guariconensis) strain isolated from the Aurá river located in the Brazilian Amazon hydrographic basin. METHODS: WGS using an Illumina® MiSeq System was used to characterize the genome of Pseudomonas sp. IEC33019 strain. Southern blotting/hybridization assays were performed to confirm the location of the MBL-encoding gene, blaBIM-1 (Belém Imipenemase). Antimicrobial susceptibility testing, cloning, and biochemical and phenotypic characterization were performed to determine BIM-1 kinetics. RESULTS: The IEC33019 strain showed high resistance rates to ß-lactams, ciprofloxacin and aminoglycosides, being susceptible only to polymyxins and susceptible, increased exposure to aztreonam. WGS analysis revealed a novel acquired MBL-encoding gene, blaBIM-1, found as a gene cassette inserted into a class 1 integron (In1326) that also carried qnrVC1 and aadA11e. In1326 was located in a complex transposon, Tn7122, carried by a 52.7 kb conjugative plasmid (pIEC33019) with a toxin/antitoxin system (vapB/vapC). BIM-1 belongs to the molecular subgroup B1 and shares 70.2% and 64.9% similarity with SIM-1 and IMP-1, respectively. Kinetics analysis of BIM-1 showed hydrolytic activity against all ß-lactams tested. CONCLUSIONS: BIM-1 is a novel acquired MBL encoded by a gene carried by mobile genetic elements, which can be transferred to other Gram-negative bacilli (GNB). Because the IEC33019 strain was recovered from a river impacted by a populous metropolitan region with poor basic sanitation and served by limited potable freshwater, it would be important to establish the role of the BIM-1-producing GNB as nosocomial pathogens and/or as colonizers of the riverside population in this geographical region.


Assuntos
Pseudomonas , beta-Lactamases , Pseudomonas/genética , beta-Lactamases/genética , Brasil/epidemiologia , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , beta-Lactamas , Testes de Sensibilidade Microbiana
6.
Microorganisms ; 11(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110475

RESUMO

The detection of KPC-type carbapenemases is necessary for guiding appropriate antibiotic therapy and the implementation of antimicrobial stewardship and infection control measures. Currently, few tests are capable of differentiating carbapenemase types, restricting the lab reports to their presence or not. The aim of this work was to raise antibodies and develop an ELISA test to detect KPC-2 and its D179 mutants. The ELISA-KPC test was designed using rabbit and mouse polyclonal antibodies. Four different protocols were tested to select the bacterial inoculum with the highest sensitivity and specificity rates. The standardisation procedure was performed using 109 previously characterised clinical isolates, showing 100% of sensitivity and 89% of specificity. The ELISA-KPC detected all isolates producing carbapenemases, including KPC variants displaying the ESBL phenotype such as KPC-33 and -66.

7.
Microorganisms ; 11(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36985155

RESUMO

S. pseudintermedius is a known resident of the skin and mucous membranes and a constituent of the normal microbiota of dogs. It has also been recognized as an opportunistic and zoonotic pathogen that is able to colonize humans and cause severe diseases, especially in immunocompromised hosts. Most importantly, methicillin-resistant S. pseudintermedius (MRSP), which is intrinsically multidrug-resistant, has emerged with serious public health consequences. The epidemiological situation is further exacerbated with reports of its zoonotic transmission and human infections which have been mostly attributed to the increasing frequency of dog ownership and close contact between dogs and humans. Evidence on the zoonotic transmission of MRSP from pet dogs to humans (such as dog owners, small-animal veterinarians, and other people in close proximity to dogs) is limited, especially due to the misidentification of S. pseudintermedius as S. aureus. Despite this fact, reports on the increasing emergence and spread of MRSP in humans have been increasing steadily over the years since its first documented report in 2006 in Belgium. The emergence of MRSP strains has further compromised treatment outcomes in both veterinary and human medicine as these strains are resistant to beta-lactam antimicrobials usually prescribed as first line treatment. Frustratingly, the limited awareness and surveillance of the zoonotic transmission of S. pseudintermedius have underestimated their extent of transmission, prevalence, epidemiology, and public health significance. In order to fill this gap of information, this review focused on detailed reports on zoonotic transmission, human colonization, and infections by S. pseudintermedius, their pathogenic features, antimicrobial resistance profiles, epidemiology, risk factors, and treatment. In writing this review, we searched Web of Science, PubMed, and SCOPUS databases using the keyword "Staphylococcus pseudintermedius AND humans". A phylogenetic tree to determine the genetic relatedness/diversity of publicly available genomes of S. pseudintermedius was also constructed.

8.
Antibiotics (Basel) ; 12(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36830148

RESUMO

Fosfomycin disodium is a potential therapeutic option to manage difficult-to-treat infections, especially when combined with other antimicrobials. In this study, we evaluated the activity of fosfomycin in combination with meropenem or polymyxin B against contemporaneous KPC-2-producing K. pneumoniae clinical isolates (KPC-KPN). Synergistic activity was assessed by checkerboard (CKA) and time-kill (TKA) assays. TKA was performed using serum peak and trough concentrations. The activity of these combinations was also assessed in the Galleria mellonella model. Biofilm disruption was assessed by the microtiter plate technique. CKA resulted in an 8- to 2048-fold decrease in meropenem MIC, restoring meropenem activity for 82.4% of the isolates when combined with fosfomycin. For the fosfomycin + polymyxin B combination, a 2- to 128-fold reduction in polymyxin B MIC was achieved, restoring polymyxin B activity for 47% of the isolates. TKA resulted in the synergism of fosfomycin + meropenem (3.0-6.7 log10 CFU/mL decrease) and fosfomycin + polymyxin B (6.0-6.2 log10 CFU/mL decrease) at peak concentrations. All larvae treated with fosfomycin + meropenem survived. Larvae survival rate was higher with fosfomycin monotherapy (95%) than that observed for fosfomycin + polymyxin B (75%) (p-value < 0.0001). Finally, a higher biofilm disruption was observed under exposure to fosfomycin + polymyxin B (2.4-3.4-fold reduction). In summary, we observed a synergistic effect of fosfomycin + meropenem and fosfomycin + polymyxin B combinations, in vitro and in vivo, against KPC-KPN, as well as biofilm disruption.

9.
Microorganisms, v. 11, n. 4, 1052, abr. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4878

RESUMO

The detection of KPC-type carbapenemases is necessary for guiding appropriate antibiotic therapy and the implementation of antimicrobial stewardship and infection control measures. Currently, few tests are capable of differentiating carbapenemase types, restricting the lab reports to their presence or not. The aim of this work was to raise antibodies and develop an ELISA test to detect KPC-2 and its D179 mutants. The ELISA-KPC test was designed using rabbit and mouse polyclonal antibodies. Four different protocols were tested to select the bacterial inoculum with the highest sensitivity and specificity rates. The standardisation procedure was performed using 109 previously characterised clinical isolates, showing 100% of sensitivity and 89% of specificity. The ELISA-KPC detected all isolates producing carbapenemases, including KPC variants displaying the ESBL phenotype such as KPC-33 and -66.

10.
Antibiotics (Basel) ; 11(12)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36551493

RESUMO

This study aimed to characterize a Klebsiella pneumoniae strain (KP411) recovered from the stool samples of poultry (Gallus gallus) in the Brazilian Amazon Region. The whole-genome sequencing of KP411 revealed the presence of an important arsenal of antimicrobial resistance genes to ß-lactams (blaCTX-M-14, blaTEM-1B, blaKPC-2, blaSVH-11), aminoglycosides [aph(3″)- Ib, aph(6)-Id, aph(3')-Ia], sulfonamides (sul1, sul2), quinolones (oqxAB), fosfomycin (fosAKP), and macrolides [mph(A)]. Furthermore, our analyses revealed that the KP411 strain belongs to the ST258 clonal lineage, which is one of the main epidemic clones responsible for the dissemination of KPC-2 worldwide. Our data suggest that food-producing animals may act as reservoirs of multidrug-resistant K. pneumoniae belonging to the ST258 clone, and, consequently, contribute to their dissemination to humans and the environment.

11.
Antimicrob Agents Chemother ; 66(12): e0083922, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36377877

RESUMO

Since its first report, the class A Brazilian Klebsiella carbapenemase (BKC) has been detected only among Enterobacterales isolates from Brazilian hospitals. In this study, we characterized a multidrug-resistant Pseudomonas juntendi clinical isolate and identified a 43.3-kb plasmid carrying blaBKC-1 and a class 1 integron (In1996) containing the arr-2, qnrVC1, dfrA21, and aac(6')-Ib' gene cassettes. Our results confirm the ability of Pseudomonas putida group isolates to acquire antimicrobial resistance determinants and further act as resistance reservoirs.


Assuntos
Carbapenêmicos , Pseudomonas putida , Carbapenêmicos/farmacologia , Klebsiella , Pseudomonas putida/genética , Brasil , Antibacterianos/farmacologia , Pseudomonas , beta-Lactamases/genética , Proteínas de Bactérias/genética , Testes de Sensibilidade Microbiana
12.
Microb Drug Resist ; 28(11): 1037-1042, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36318798

RESUMO

Typing carbapenem-resistant Klebsiella pneumoniae (CR-KPN) is crucial in controlling their dissemination and solving outbreaks. In this context, we searched for an effective, faster, and cheaper alternative technique to type KPN by analyzing the fosAKP sequence. We analyzed the nucleotide sequences of chromosomal fosAKP gene in 350 KPN genomes (70 per sequence type [ST] or clonal complex [CC]). Assembly genomes were randomly downloaded from NCBI and annotated using RAST in PATRIC platform. The isolate STs were verified using multilocus sequence typing 2.0 by the Center for Genomic Epidemiology. Chromosomally encoded fosAKP was confirmed in MLplasmid, and the sequence alignments were performed in Clustal Omega. The amino acid sequences were analyzed using SNAP2 and SMART platforms. Out of the 70 genomes analyzed for each ST/CC, we observed 100% fosA sequence identity for CC258/11, ST15, ST307, and ST101. For ST16, only two fosA sequences were different from each other. We observed differences in amino acid sequences at positions 25 and 79 (ST16) and 86 (ST16, ST101). The C-terminal (amino acid 138, 139, 140) was different for each cluster. None of these polymorphisms is related to the protein active site. Moreover, L25Q (ST16) polymorphism was predicted to probably affect the protein function. We observed that chromosomal fosAKP sequences from KPN are highly conserved in ST15, ST307, ST16, ST101, and CC258/11, suggesting fosAKP sequencing as an alternative, easier, faster, and less expensive technique in identifying epidemiological STs for KPN, and discriminating them from CC258/11.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , beta-Lactamases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Tipagem de Sequências Multilocus , Células Clonais/metabolismo , Testes de Sensibilidade Microbiana
13.
Br J Nurs ; 31(19): S26-S31, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36306235

RESUMO

HIGHLIGHTS: Compare effectiveness of chemical disinfectants in reducing S. aureus. Five disinfectants reduced the bacterial load, especially chlorhexidine solutions. Focus on Brazilian clinical practice of needleless connector disinfection. PURPOSE: This study aimed to gain further knowledge about the comparative effectiveness of chemical disinfectants in reducing the bacterial load of NCs inoculated with S. aureus. METHODS: Disinfection of needleless connectors was undertaken in vitro against S. aureus comparing 70% isopropyl alcohol (IPA), 70% ethanol, 0.5% and 2% chlorhexidine in 70% IPA applied with gauze, and 70% IPA single-use cap (Site-Scrub®). RESULTS: All disinfectants reduced the bacterial load (P<0.001), especially the chlorhexidine solutions. Mechanical friction should follow guidelines. CONCLUSION: This study found that all tested disinfectants effectively reduced the bacterial load and more clinical studies must be developed with a focus on the Brazilian clinical practice of needleless connector disinfection.


Assuntos
Desinfetantes , Desinfecção , Humanos , Staphylococcus aureus , Clorexidina , Contaminação de Equipamentos/prevenção & controle , Carga Bacteriana , Desinfetantes/farmacologia , 2-Propanol/farmacologia , Etanol
14.
J Glob Antimicrob Resist ; 31: 165-166, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36064106

RESUMO

OBJECTIVE: Herein, this study aimed to perform the genomic characterization of a blaKPC-2 positive Klebsiella pneumoniae (KP1.1JP) strain isolated from the surface water of river located the Brazilian Amazon region. METHODS: Antimicrobial susceptibility testing was performed following BrCAST/EUCAST recommendations. Genomic DNA was extracted and sequenced using the Illumina® NextSeq platform and the assembly of the generated reads was performed using the SPAdes software. Research on the sequence type, resistance and virulence encoding genes, and plasmid replicon typing was carried out. RESULTS: The KP1.1JP strain was resistant to all ß-lactams, aminoglycosides, and fluoroquinolones tested. The genome size was 5 626 346 bp, distributed in 203 contigs and a guanine and cytosine content of 57.02%. The values of N50 and N75 were 285 583 bp and 173 927 bp, respectively. We verified that KP1.1JP belongs to ST101 and carries genes encoding resistance to ß-lactams (blaCTX-M-15, blaTEM-1B, blaOXA-1, blaSVH-182, and blaKPC-2), aminoglycosides [aac(3')-IIa, aph(3')-Vla], fluoroquinolones [aac(6')-Ib-cr], phenicol (catA1, catA2, catB3), tetracycline [tet(D)], trimethoprim (dfrA14), and fosfomycin (fosA). Additionally, the following virulence encoding genes were also detected: mrkABCDFHIJ (Fimbria type 3); fimABCDRFGHIK (Fimbria type 1); entABCDEFS and fepABCDG (siderophores); iroN, irp1, and irp2 (salmochelins); fyuA and ybtAEPQSTUX (yersiniabactin); and iutA (aerobactin). CONCLUSIONS: We report the occurrence of a K. pneumoniae ST101 strain carrying blaKPC-2 gene in an Amazon river in Brazil. The genomic characteristics of this strain will contribute to a better understanding of the spread of pathogens of clinical importance in the environment based on a One Health perspective.


Assuntos
Klebsiella pneumoniae , beta-Lactamases , Aminoglicosídeos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases/genética , beta-Lactamas , Brasil , Fluoroquinolonas , Testes de Sensibilidade Microbiana , Rios , Sequenciamento Completo do Genoma
15.
Comp Immunol Microbiol Infect Dis ; 89: 101870, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36088796

RESUMO

To determine the antibiotypes and frequency of toxin genes in methicillin-resistant Staphylococcus pseudintermedius (MRSP), 281 nasal swab samples were collected from dogs and dog guardians in Abakaliki, Southeastern Nigeria. Antimicrobial susceptibility testing was determined by disc diffusion technique while detection of toxin genes was carried out by PCR. Exactly 41 (28.7 %) and 6 (4.3 %) MRSP were obtained from dogs and dog guardians respectively. Isolates exhibited resistance (100-16.7 %) to amoxicillin-clavulanic acid, cephalosporins, fluoroquinolones, and carbapenems. Seccanine, lukD, siet, and exi toxin genes were harboured by 42 (89.4 %), 47 (100 %), 37 (78.7 %), and 2 (4.3 %) MRSP isolates respectively. This study has shown that dogs and dog guardians in Abakaliki, Southeastern Nigeria are colonized by multiple drug-resistant MRSP which harbour toxin genes. This represents a significant public health problem in veterinary and human medicine.


Assuntos
Anti-Infecciosos , Doenças do Cão , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Combinação Amoxicilina e Clavulanato de Potássio , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Carbapenêmicos , Cefalosporinas , Doenças do Cão/epidemiologia , Cães , Fluoroquinolonas , Humanos , Resistência a Meticilina/genética , Testes de Sensibilidade Microbiana/veterinária , Nigéria/epidemiologia , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/veterinária , Staphylococcus
16.
Microbiol Spectr ; 10(5): e0056522, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35993730

RESUMO

The epidemiology of antimicrobial resistance (AMR) is complex, with multiple interfaces (human-animal-environment). In this context, One Health surveillance is essential for understanding the distribution of microorganisms and antimicrobial resistance genes (ARGs). This report describes a multicentric study undertaken to evaluate the bacterial communities and resistomes of food-producing animals (cattle, poultry, and swine) and healthy humans sampled simultaneously from five Brazilian regions. Metagenomic analysis showed that a total of 21,029 unique species were identified in 107 rectal swabs collected from distinct hosts, the highest numbers of which belonged to the domain Bacteria, mainly Ruminiclostridium spp. and Bacteroides spp., and the order Enterobacterales. We detected 405 ARGs for 12 distinct antimicrobial classes. Genes encoding antibiotic-modifying enzymes were the most frequent, followed by genes related to target alteration and efflux systems. Interestingly, carbapenemase-encoding genes such as blaAIM-1, blaCAM-1, blaGIM-2, and blaHMB-1 were identified in distinct hosts. Our results revealed that, in general, the bacterial communities from humans were present in isolated clusters, except for the Northeastern region, where an overlap of the bacterial species from humans and food-producing animals was observed. Additionally, a large resistome was observed among all analyzed hosts, with emphasis on the presence of carbapenemase-encoding genes not previously reported in Latin America. IMPORTANCE Humans and food production animals have been reported to be important reservoirs of antimicrobial resistance (AMR) genes (ARGs). The frequency of these multidrug-resistant (MDR) bacteria tends to be higher in low- and middle-income countries (LMICs), due mainly to a lack of public health policies. Although studies on AMR in humans or animals have been carried out in Brazil, this is the first multicenter study that simultaneously collected rectal swabs from humans and food-producing animals for metagenomics. Our results indicate high microbial diversity among all analyzed hosts, and several ARGs for different antimicrobial classes were also found. As far as we know, we have detected for the first time ARGs encoding carbapenemases, such as blaAIM-1, blaCAM-1, blaGIM-2, and blaHMB-1, in Latin America. Thus, our results support the importance of metagenomics as a tool to track the colonization of food-producing animals and humans by antimicrobial-resistant bacteria. In addition, a network surveillance system called GUARANI, created for this study, is ready to be expanded and to collect additional data.


Assuntos
Anti-Infecciosos , Farmacorresistência Bacteriana , Humanos , Suínos , Bovinos , Animais , Farmacorresistência Bacteriana/genética , Brasil , Metagenômica/métodos , Bactérias , Antibacterianos/farmacologia , Aves Domésticas , Genes Bacterianos
17.
Microb Drug Resist ; 28(8): 849-852, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35833887

RESUMO

Pseudomonas aeruginosa is an opportunist pathogen usually associated with life threatening infections and exhibits a set of intrinsic and acquired antimicrobial mechanisms. Although resistance to penicillins-like compounds is commonly associated with the chromosomal Pseudomonas-derived cephalosporinases ß-lactamase, the real contribution of OXA-50, a second chromosomally encoded ß-lactamase, remains unclear. In this study, we characterized the biochemical properties of OXA-50, OXA-488, and OXA-494. Both oxacilinases differ from OXA-50 in two amino acids each. The blaOXA-50, blaOXA-488, and blaOXA-494 were cloned into pET26b+ that was transformed into Escherichia coli DH5α strain, expressed in E. coli BL21 strain, and then purified for obtaining the hydrolytic parameters. Benzylpenicillin was the preferential substrate instead of oxacillin. Besides, OXA-488 showed a threefold increase in catalytic efficiency for benzylpenicillin, and it was twofold more efficient in hydrolyzing imipenem, compared with OXA-50, although such carbapenemase activity was considered weak. In addition, OXA-488 and OXA-494 showed an increased affinity for penicillins, which contributed to the increased catalytic efficiency against ampicillin, especially OXA-488. Chromosomally encoded resistance mechanisms are usually overshadowed by acquired mechanisms. However, understanding their real contribution is essential to comprehend the versatile profiles verified in P. aeruginosa isolates. Such information can help to choose the best therapy in a scenario of limited options.


Assuntos
Pseudomonas aeruginosa , beta-Lactamas , Antibacterianos/farmacologia , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólise , Cinética , Testes de Sensibilidade Microbiana , Oxacilina , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , beta-Lactamases/metabolismo , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia
18.
Sci Data ; 9(1): 366, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752638

RESUMO

The One Health concept is a global strategy to study the relationship between human and animal health and the transfer of pathogenic and non-pathogenic species between these systems. However, to the best of our knowledge, no data based on One Health genome-centric metagenomics are available in public repositories. Here, we present a dataset based on a pilot-study of 2,915 metagenome-assembled genomes (MAGs) of 107 samples from the human (N = 34), cattle (N = 28), swine (N = 15) and poultry (N = 30) gut microbiomes. Samples were collected from the five Brazilian geographical regions. Of the draft genomes, 1,273 were high-quality drafts (≥90% of completeness and ≤5% of contamination), and 1,642 were medium-quality drafts (≥50% of completeness and ≤10% of contamination). Taxonomic predictions were based on the alignment and concatenation of single-marker genes, and the most representative phyla were Bacteroidota, Firmicutes, and Proteobacteria. Many of these species represent potential pathogens that have already been described or potential new families, genera, and species with potential biotechnological applications. Analyses of this dataset will highlight discoveries about the ecology and functional role of pathogens and uncultivated Archaea and Bacteria from food-producing animals and humans. Furthermore, it also represents an opportunity to describe new species from underrepresented taxonomic groups.


Assuntos
Microbioma Gastrointestinal , Metagenoma , Animais , Archaea/genética , Bactérias/genética , Bovinos , Humanos , Metagenômica , Suínos
19.
Braz J Microbiol ; 53(2): 785-789, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35138632

RESUMO

The genus Raoultella spp. is comprised of four species, namely, R. electrica, R. ornithinolytica, R. planticola, and R. terrigena, which are rarely reported to cause infections in humans. This study aimed to characterize six strains of Raoultella spp. isolated from stool samples from patients with diarrhea. The strains included in the study were previously identified by biochemical methods as K. pneumoniae, during a surveillance study conducted in 1987. In the present study, the strains were re-identified by MALDI TOF and 16S rRNA sequencing and subsequently subjected to virulence gene screening by PCR, hemolytic activity, biofilm formation, hypermucoviscosity phenotype, capacity to interact with Caco-2 cells, and antimicrobial susceptibility test. Our results revealed that, among the six strains, three were identified as R. ornithinolytica and three as R. planticola. The genes related to iron uptake systems (aero1, aero2, iutA, entB, and ybtS) and adhesin (mrkD) were found in all strains. Furthermore, all strains demonstrated the ability to interact in vitro with Caco-2 cells and form biofilms. In general, the strains studied were sensitive to the antimicrobials tested; however, it was possible to observe high MICs for imipenem compared to ertapenem and meropenem and high minimal inhibitory concentrations (MICs) for ceftazidime, except for one strain. Our results show the occurrence of virulent strains of Raoultella spp. with high MICs for imipenem and ceftazidime causing diarrhea. We hope that our findings can contribute to the understanding of the evolution of this species since, as far as we know, these are the oldest isolates reported so far.


Assuntos
Ceftazidima , Imipenem , Antibacterianos/farmacologia , Células CACO-2 , Diarreia , Enterobacteriaceae/genética , Humanos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , RNA Ribossômico 16S/genética
20.
Braz J Microbiol ; 53(2): 795-799, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35141834

RESUMO

In Brazil, carbapenem-resistant A. baumannii (CRAB) is a critical pathogen showing high carbapenem resistance rates. Currently, there is little epidemiological data on A. baumannii isolated in the Northern Brazilian region. Herein, this study aimed to characterize the resistance mechanisms of CRAB isolates recovered from hospitalized patients in the state of Rondônia in 2019. Most of CRAB were considered as extensively drug-resistant, and some of them showed high MICs for minocycline. Only polymyxins showed a satisfactory activity. All isolates carried blaOXA-23 and were included in 14 distinct clusters, with the predominance of clonal group A (29%). The IC1 was the most frequent clonal group, followed by IC5 and IC4. Here, we firstly reported the epidemiological scenario of CRAB in the state of Rondônia, located in the Brazilian Amazon region. The high frequency of CRAB presenting XDR phenotype is of great concern, due to limited therapeutical options, especially in the actual pandemic scenario, in which we observed an overcrowding of ICU beds. Such results are essential to better characterize the epidemiology of CRAB in the entire Brazilian territory.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções por Acinetobacter/epidemiologia , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos , Células Clonais , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA